

Data Privacy CMSC 491/691

L02 – Privacy by Design

Previously on...

- Privacy, private information / personal data / PII, privacy principles
- Data Privacy regulations, GDPR

TECH

Facebook says Apple iOS privacy change will result in \$10 billion revenue hit this year

BIZTECH NEWS

PUBLISHED WED, FEB 2 2022+7:54 PM EST | UPDATED THU, FEB 3 2022+11:06 AM E

Meta threatens to shut down Facebook and Instagram in Europe over data transfer issues

Motivation for Adopting Privacy Principles

- Regulations
- Costs!

- Proactive Reactive
- Legal liabilities, class action suits
- Loss of client confidentially and trust
- Damage to brand's reputation
- Loss of costumers and/or competitive edge
- o ...

Average Cost Of A Data Breach Highest In The U.S.

Average total cost of a data breach by country in 2018

Privacy by Design (PbD)

- Approach to systems engineering
- Developed by <u>Ann Cavoukian</u>
- Framework published in 2009
- Calls for privacy to be taken into account throughout the whole engineering process.
- The GDPR incorporates Privacy by Design

Foundational Principles

- 1. Proactive not reactive; preventive not remedial
- 2. Privacy as the **default setting**
- 3. Privacy embedded into design
- 4. Full functionality positive-sum, not zero-sum
- 5. End-to-end security full lifecycle protection
- 6. Visibility and transparency keep it open
- 7. Respect for user privacy keep it user-centric

"[...] these principles remain vague and leave many open questions about their application when engineering systems." - Gurses et al (2011)

But how?!

- Pay according to road use: time, distance, type or road, congestion.
- Requirements:
 - "the provider needs to know the final fee to charge;"
 - "the provider must be reassured that this fee is correctly computed and users cannot commit fraud"
 - Note: location as a means to the above -> not intrinsic.
- Privacy risks:

(1) Third party access to traffic / location data of driver.(2) Abuse of traffic data by authority performing the billing. (location data cannot be easily anonymized)

Data Minimization Strategies

Activity 1: Classify Entities in Domains

User Domain: components under user control (e.g., user devices)
 Service Domain: components outside of user control (e.g., backend server at service provider)

Activity 1: Classify Entities in Domains

- User Domain: components under user control (e.g., user devices)
 - Service Domain: components outside of user control (e.g., backend server at service provider)

Activity 1: Classify Entities in Domains

User Domain: components under user control (e.g., user devices) Service Domain: components outside of user control (e.g., backend server at service provider)

Activity 2: Identify Necessary Data to Provide Service

- Location Data \rightarrow Compute Bill
- Billing Data \rightarrow Charge User
- Personal Data → Send Bill
- Payment Data \rightarrow Perform Payment

Activity 1: Classify Entities in Domains

User Domain: components under user control (e.g., user devices) Service Domain: components outside of user control (e.g., backend server at service provider)

Activity 2: Identify Necessary Data to Provide Service

(0)

- Location Data \rightarrow Compute Bill s E
- Billing Data \rightarrow Charge User
- Personal Data → Send Bill
- Payment Data \rightarrow Perform Payment

Activity 3: Distribute Data in Architecture

 \rightarrow

Activity 4: Select Technological Solutions following

Minimizing privacy risks and trust assumptions placed on other entities Minimize Minimize Linkability Minimize Minimize Minimize Centralization Replication Replication

 \rightarrow

Activity 4: Select Technological Solutions following

- Not sending the data (local computations)
- Encrypting the data
- Advance privacy preserving protocols
- Obfuscate the data
- Anonymize the data

Minimizing privacy risks and trust assumptions placed on other entities Minimize Minimize Disclosure Linkability Minimize Releation Replication Reletion

Requires deep knowledge of PETs!

Privacy Engineering (Gurses et al, 2011)

• Process:

- Functional Requirements Analysis:
 (Vague requirements lead to privacy problems.)
- Data Minimization:
 (Identity or data not always necessary)
- Modelling Attackers, Threats and Risks
 (Which parties have incentives to be hostile to the requirements)
- Multilateral Security Requirements Analysis
 (Conflicting / contradicting security requirements of all parties)
- Implementation and Testing of the Design

Iterate all

Crucial

"If the functionality was not properly delimited in our case studies, even following our methodology, we would be forced to go for a centralized approach collecting all the data" -- Gurses et al 2009.

Discussion Case Study: Pay and earn what is fair

- Greendale Community College (GCC) wants to implement a new system:
 - Students pay only for the classes they attend
 - Faculty salary depends on how many students attend their classes
 - Nobody can commit fraud!
 - o

Unlimited Data Analytics! (pose any SQL query) Encryption User Authentication

. . .

