

Data Privacy CMSC 491/691

L05 – Access Control

Icons from https://thenounproject.com/

Previously on...

- Usable Privacy \rightarrow HCI is critical for privacy
- Informed Consent
 - **P3P**
 - Automated Analysis of Privacy Policies

NHS Scotland's Covid Status app criticised over privacy failings

In the news!

Access Control

"selective restriction of access to a place or other resource"

Physical Security

Computer Security

Components

- Access control policy
 - Specifies the authorized accesses of a system

- Access control mechanism
 - Implements and enforces the policy

Entities

• Subjects

• Entity that can access objects

• Objects

- access controlled resource
 - Files, records, directories, etc.

• Access right

- Way in which subject accesses object
 - Read, write, execute, delete, create, search, etc.

Access Control Matrix

Objects

		Α	В	С	D
Subjects	Alice	R	R/W	R	-
	Bob	R	R	-	R/W
	Charlie	-	-	W	-
	Dave	-	-	R/W	R

Access-Control List (ACL)

• Difficult to determine all objects a subject can access

Real world example?

JULIA EVANS @b@rk UNIX	permissio	ns drawings.jvns.ca
There are 3 things you can do to a file	Is -I file.txt shows Here's how to inter	you permissions pret the output:
read Write execute	rw- rw- f bork (user) staff (group) can read & write read & write	bork staff ANYONE can read
File permissions are 12 bits setuid setgid User group all 000 110 110 100 sticky rwx rwx rwx For the r/w/x bits: 1 means "allowed" 0 means "not allowed"	110 in binary is 6 So $rw-rr$ = 110 100 100 = 6 4 4 chmod 644 file.txt means change the permissions to: rW-rr simple!	setuid affects executables \$ 1s -1 /bin/ping rws r-x r-x root root this means ping <u>always</u> runs as root setgid does 3 different unrelated things for executables, directories, and regular files unix! unix!

Capability-Based

- Convenient wrt subjects
- Difficult to determine all subjects that can access object

Access Control Policy Models

- Attribute-based Access Control (ABAC)
- Discretionary Access Control (DAC)
- Graph-based Access Control (GBAC)
- History-Based Access Control (HBAC)
- History-of-Presence Based Access Control (HPBAC)
- Identity-Based Access Control (IBAC)
- Lattice-Based Access Control (LBAC)
- Mandatory Access Control (MAC)
- Organization-Based Access control (OrBAC)
- Role-Based Access Control (RBAC)
- Rule-Based Access Control (RAC)

. . .

Responsibility Based Access control

Databases 101

SELECT E.Name, E.Salary FROM Employee E, Project P, Assignments A WHERE P.Name="Project1" AND P.Id=A.Project AND E.Team=A.T

Mandatory Access Control (MAC)

- Provide users with access based on data confidentiality and user clearance levels
- Access is granted on a **need-to-know** basis
- Policies defined by administrators not by users
- Based on multilevel security (MLS)
 - Top secret > secret > confidential > restricted > unclassified

MAC: Properties

- Two required properties for confidentiality:
 - No read up
 - Subject can only read an object of less or equal security level
 - No write down
 - Subject can only write into object of greater or equal security level

MAC: Mechanism

Project

ld	Name	Budget
1	Project1	\$1M
2	Project2	\$250K

Project-MAC

ld	λ (ld)	Name	λ(Name)	Budget	λ(Budget)

Top-Secret User

Secret User

(
7	5	

ld	λ (Id)	Name	λ(Name)	Budget	λ(Budget)
1	S	Project1	S	\$1M	TS
2	S	Project2	S	\$250K	TS

ld	λ (ld)	Name	λ(Name)	Budget	λ(Budget)
1	S	Project1	S	null	S
2	S	Project2	S	null	S

MAC: Pros and Cons

• Pros

Increased security & confidentiality/privacy protection

• Cons

- Difficult to implement granularity
- Difficult to maintain

Discretionary Access Control (DAC)

- For each subject access right to the objects are defined
 - (subject, object, +/- access mode)
 - (Mary, Project, read)
- Owner decides access
- Mechanisms:
 - Grant & Revoke
 - \circ Views
 - Query Modification

DAC: Grant and Revoke

GRANT <privilege> **ON** <relation> **TO** <user>

- GRANT SELECT * ON Project TO Mary
- GRANT SELECT(Salary) ON Employee TO John

REVOKE <privileges> [ON <relation>] FROM <user>

- REVOKE SELECT * ON Project FROM John
- REVOKE SELECT(Salary) ON Employee FROM Mary

DAC: Views

CREATE VIEW Small-Projects AS SELECT Id, Name, Budget FROM Project WHERE Budget < \$500K

Assign rights to access a limited part of the data

DAC: Query Modification

• Limit the queries a user can pose by rewriting them

● John → SELECT * FROM Projects

Modified query → SELECT * FROM Projects WHERE Budget < \$500K

DAC: Pros and cons

• Pros

- User-friendly
- Flexible
- Easy to implement
- Granular (up to some extent...)

• Cons

- Lower level of data protection
- Difficult to maintain

0	
owner	object
	8

Group Activity

- Choose a service (e.g., your project or a Web service / App)
- Think of examples of
 - Mandatory Access Control (MAC) policies
 - Discretionary Access Control (DAC) policies
- Is there anything you want to define that is not possible with MAC or DAC?

Previously on...

- Access Control
 - Physical vs Computer Security
- Mandatory Access Control (MAC) vs. Discretionary Access Control (DAC)

Apple updated AirTags to fend off unwanted tracking after people said they were being stalked with the devices

In the news!

Sarah Jackson Feb 10, 2022, 4:39 PM

Role-Based Access Control (RBAC)

• Access determined by roles

• Individuals change frequently but roles not that much!

RBAC: How does it work?

- Administrator defines roles
 - *E.g., RA, TA, grader, instructor, professor, etc.*
- Security administrator define RBAC policies for different roles
 - E.g., (grader, homework, read), (TA, grade, read), (instructor, grade, write), ...
- Administrator assign roles to individuals
 - \circ E.g., Roberto \rightarrow instructor, professor; Mary \rightarrow TA; John \rightarrow grader

RBAC: is it MAC / DAC / Neither?

- **RBAC** is policy neutral
 - Both MAC and DAC can be implemented with RBAC

Hierarchy of roles: Upper roles have access rights of lower roles

RBAC: Challenges

- What if I want to define different access for my TA?
 - New role: TA_DataPrivacy!
 - Role explosion! TA_DataPrivacy, TA_CMSC331, TA_CMSC331_Fall....?
- What if I want to define access based on context?
 - New role: TA_DataPrivacy_Grading !?

Attribute-Based Access Control (ABAC)

• Define authorizations that express conditions on properties of both the

resource and the subject

- Each resource has an attribute (e.g., the subject that created it)
- A single rule states ownership privileges for the creators
- Increased **flexibility** and **expressivity** power

ABAC: Attributes

• Subject

- Define identity and characteristics
- E.g., name, organization, job title, etc.

• Object

- Define the characteristics of the resource
- \circ E.g., title, author, date

• Environment attributes

- Describe the operational, technical, and even situational environment or context in which the information access occurs
- E.g., current date, network security level
- Not associated with a resource or subject

ABAC: How does it work?

- Subject requests access to Object
- AC governed by policies: assesses the attr of subject, object, and env
- 3. AC grants subject access to object if authorized

Other Access Control Policy Models

Graph-based Access Control (GBAC) History-Based Access Control (HBAC) History-of-Presence Based Access Control (HPBAC) Identity-Based Access Control (IBAC) Lattice-Based Access Control (LBAC) Organization-Based Access control (OrBAC) Rule-Based Access Control (RAC) **Responsibility Based Access control**

. . .

AC: Open Challenges

- In addition to new models, **new AC mechanisms are required**
- AC implementation in new domains (IoT, Big Data, AI, Cloud computing, etc.) brings new challenges
 - Inference problem
 - Semantic gap
 - Scalability!
 - o ...

AC: Open Challenge

- The inference problem
 - Can the subject gain access to the object even if we don't grant it?
 - Use other information to infer the protected object

I know that Dave is enrolled in the class Dave got a C!

Name	Grade
John	А
Mary	A

AC: Open Challenge

• The Semantic Gap problem

"Do not track my location"

"Do not share my social interactions with applications"

What should I protect?

People's world

SEMANTIC GAP

Devices' world

2016-01-15 17:38:07.463623 | DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (167664600) 19 days, 9:44:06.00 SNMPv2-MIB::snmpTrapOID.0 = OID: SNMPv2-SMI::enterprises.14179.2.6.3.53 SNMPv2-SMI::enterprises.14179.2.6.2.35.0 = Hex-STRING: 00 19 A9 55 CE B0 NMPv2-SMI::enterprises.14179.2.6.2.36.0 = INTEGER: 1 SNMPv2-SMI::enterprises.14179.2.6.2.43.0 = IpAddress: 169.234.57.122

Summary

- Access Control restricts access to resources
- Useful to represent user privacy preferences
- Two parts:
 - AC Policy + AC Mechanism
- Plenty of AC models!
 - DAC / MAC, RBAC, ABAC, ...
- Open challenges for AC mechanisms

Group Activity

- Choose a service (e.g., your project or a Web service / App)
- Think of examples of Attribute-Based Access Control (ABAC) policies:
 - Defined by the administrator for employees
 - Defined by users of the service