

Data Privacy CMSC 491/691

L06 – k-anonymity, /-diversity, t-closeness

Icons from https://thenounproject.com/

Previously on...

- Access Control to represent user preferences
- Policies and mechanisms
- AC models:
 - DAC, MAC, RBAC, ABAC
- Challenges: scalability, inference problem, semantics...

HBO accused of sharing subscriber data with Facebook in class lawsuit

by Christopher Hutton, Breaking News Reporter | March 09, 2022 12:18 PM

In the news!

The Need to Share Data

- For research purposes
 - E.g., social, medical, technological, etc.
- Mandated by laws and regulations
 - E.g., census

. . .

- For security/business decision making
 - E.g., network flow data for Internet-scale alert correlation
- For system testing before deployment

• Publishing data may result in privacy violations

When Things go Wrong

AOL Search Data

The Netflix Prize

- Anonymizing datasets (e.g., removing user identifiers) does not preserve privacy!
- De-anonymization attacks
 - E.g., use background knowledge (IMDB for Netflix prize)

How to publish data to satisfy privacy while providing utility?

Classification of Attributes

• Key attributes

- Name, address, phone number uniquely identifying!
- Always removed before release

• Quasi-identifiers

- (5-digit ZIP code, birth date, gender) uniquely identify 87% of the population in the U.S.
- Can be used for linking anonymized dataset with other datasets

• Sensitive attributes

- Medical records, salaries, etc.
- These attributes is what the researchers need, so they are always released directly

Key Attribute	(Sensitive attribut		
Name	Age	Sex	Zipcode	Disease
Alice	29	Female	47677	Ovarian Cancer
Beth	22	Female	47602	Ovarian Cancer
Andre	27	Male	47678	Prostate Cancer
Dan	43	Male	47905	Heart Disease
Ellen	52	Female	47909	Heart Disease
Eric	47	Male	47906	Heart Disease

k-Anonymity: Intuition

- Each record is indistinguishable from at least k-1 other records when only quasi-identifiers are considered
 - Example: you try to identify a man in the released table, but the only information you have is his birth date and gender. There are k men in the table with the same birth date and gender.

• The k records form an **equivalence class**

Samarati, Pierangela; Sweeney, Latanya (1998). "Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression"

Achieving *k*-Anonymity

- Main methods:
 - **Generalization**: Replace with less-specific values
 - Suppression: Remove outliers
- Many other methods in the literature...

Age	Sex	Zipcode	Disease
2*	*	476**	Ovarian Cancer
2*	*	476**	Ovarian Cancer
2*	*	476**	Prostate Cancer
[43,52]	*	4790*	Heart Disease
[43,52]	*	4790*	Heart Disease
43,521	*	4790*	Heart Disease
		unnress	ion (cell-level)

Generalization

Generalization Hierarchies

- Generalization Hierarchies: Data owner defines how values can be generalized
- **Table Generalization:** A table generalization is created by generalizing all values in a column to a specific level of generalization

k-Minimal Generalizations

• There are many *k*-anonymizations – which one to pick?

- Intuition: The one that does not generalize the data more than needed (decrease in utility of the published dataset!)
- K-minimal generalization: A *k*-anonymized table that is not a generalization of another *k*-anonymized table

Race E ₀	ZIP Z ₀	Race E ₁	ZIP Z ₀		Race E ₁	ZIP Z1		Race E ₀	ZIP Z ₂	Race E ₀	ZIP Z ₁
Black	02138	Person	02138	1	Person	0213*	1	Black	021**	Black	0213*
Black	02139	Person	02139		Person	0213*		Black	021**	Black	0213*
Black	02141	Person	02141		Person	0214*		Black	021**	Black	0214*
Black	02142	Person	02142		Person	0214*		Black	021**	Black	0214*
White	02138	Person	02138		Person	0213*		White	021**	White	0213*
White	02139	Person	02139		Person	0213*		White	021**	White	0213*
White	02141	Person	02141		Person	0214*		White	021**	White	0214*
White	02142	Person	02142		Person	0214*		White	021**	White	0214*
P	Т	G	GT _[1,0]		GT _[1,1] GT _[0,2]		G	[0,1]			
	Figure 4 Examples of generalized tables for PT										

#	Zip	Age	Nationality	Condition			
1	13053	< 40	* Heart Disease		* Heart Disease		2 minimal
2	13053	< 40	*	Viral Infection	Generalizations		
3	13067	< 40	*	Heart Disease			
4	13067	< 40	*	Cancer			

#	Zip	Age	Nationality	Condition
1	130**	< 30	American	Heart Disease
2	130**	< 30	American	Viral Infection
3	130**	3*	Asian	Heart Disease
4	130**	3*	Asian	Cancer

#	Zip	Age	Nationality	Condition	
1	130**	< 40	*	Heart Disease	
2	130**	< 40	*	Viral Infection	2-minimal
3	130**	< 40	*	Heart Disease	Generalization
4	130**	< 40	*	Cancer	

Example *k*-anonymization

Age	Sex	Zipcode	Disease
2*	*	476**	Ovarian Cancer
2*	*	476**	Ovarian Cancer
2*	*	476**	Prostate Cancer
[43,52]	*	4790*	Heart Disease
[43,52]	*	4790*	Heart Disease
[43,52]	*	4790*	Heart Disease

• **3-Anonymous** table

Problems?

- The adversary knows Alice's QI values (47677, 29, F)
- The adversary does not know which one of the first 3 records corresponds to Alice

Attacks on *k*-Anonymity

- *k*-anonymity does not provide privacy if:
 - Sensitive values lack diversity
 - The attacker has background knowledge

Background Knowledge Attack	Age	Sex	Zipcode	Disease
Andre \rightarrow sex at birth was male \longrightarrow	2*	*	476**	Ovarian Cancer
<andre, 27=""></andre,>	2*	*	476**	Ovarian Cancer
	2*	*	476**	Prostate Cancer
	[43,52]	*	4790*	Heart Disease
Homogeneity Attack	[43,52]	*	4790*	Heart Disease
<ellen, 47909="" 52,=""></ellen,>	[43,52]	*	4790*	Heart Disease

Other Attacks

- Complementary Release Attack
 - Different releases of the same private table can be linked together to compromise k-anonymity
- Unsorted Matching Attack
 - Records appear in the same order in the released table as in the original table

Group Activity

• Releasing *k*-anonymous reviews for professors by students

Privacy?

Name	Age	Nationality	Class	Level	Grade	Prof.
Alice	21	U.S. citizen	CMSC331	Junior	В	Smith
Beth	20	U.S. citizen	CMSC334	Junior	F	Miller
Andre	22	U.S. citizen	CMSC331	Senior	А	Smith
Dan	21	U.S. citizen	CMSC491	Senior	С	Anderson
Ellen	20	U.S. citizen	CMSC203	Sophomore	F	Miller
Eric	19	U.S. citizen	CMSC101	Sophomore	А	Williams

Utility?

/-Diversity

- Recall \rightarrow k-anonymity, k records form an equivalence class
- *I*-diversity is a stronger definition of privacy
- Principle
 - Each equivalence class contains at least / well-represented sensitive values
- Instantiations
 - Distinct *I*-diversity
 - Each equivalence class contains distinct / sensitive values

o ...

A. Machanavajjhala, et al. "I-diversity: Privacy beyond k-anonymity." ACM Transactions on Knowledge Discovery from Data (TKDD) 1.1 (2007): 3-es.

	Zip	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	≥ 40	*	Cancer
6	1485*	≥ 40	*	Heart Disease
7	1485*	≥ 40	*	Viral Infection
8	1485*	≥ 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

4-anonymous table

	Zip	Age	Nationality	Condition
1	1305*	≤ 40	*	Heart Disease
4	1305*	≤ 40	*	Viral Infection
9	1305*	≤ 40	*	Cancer
10	1305*	≤ 40	*	Cancer
5	1485*	> 40	*	Cancer
6	1485*	> 40	*	Heart Disease
7	1485*	> 40	*	Viral Infection
8	1485*	> 40	*	Viral Infection
2	1306*	≤ 40	*	Heart Disease
3	1306*	≤ 40	*	Viral Infection
11	1306*	≤ 40	*	Cancer
12	1306*	≤ 40	*	Cancer

4-anonymous and 3-diverse table

What's Bob's (31yo/American/13053) disease?

What's Umeko's (21yo/Japanese/13068) disease? *BK: Japanese are less prone to heart disease

Limitations of /-Diversity

Conclusion

- 1. Bob's salary is in [20k,40k], which is relatively low
- 2. Bob has some stomach-related disease

Z	Zip	Age	Salary	Condition
4	476**	2*	20K	Gastric Ulcer
2	476**	2*	30K	Gastritis
4	476**	2*	40K	Stomach Cancer
4	4790*	≥40	50K	Gastritis
4	4790*	≥40	100K	Flu
4	4790*	≥40	70K	Bronchitis
2	476**	3*	60K	Bronchitis
2	476**	3*	80K	Pneumonia
2	476**	3*	90K	Stomach Cancer
2	476**	2*	20K	Gastric Ulcer
2	476**	2*	30K	Gastritis
2	476**	2*	40K	Stomach Cancer

I-diversity does not consider semantics of sensitive values!

Limitations of /-Diversity

- Skewness Attack
- Example: sensitive attribute is HIV+ (1%) or HIV- (99%)

• Before *l*-diversity:

probability of Bob being HIV+ = 1%

\boldsymbol{X}				
	Bob			
	Zip	Age		
	47678	27		

	Zip	Age	Condition
1	476**	< 30	HIV+
2	476**	< 30	HIV+
3	476**	< 30	HIV-
4	476**	< 30	HIV-

2-diverse table

• After 2-diverse table

probability of Bob being HIV+ = 50%!

l-diversity does not consider overall distribution of sensitive values!

t-Closeness

- Principle:
 - Distribution of sensitive attribute value in each equi-class should be "close" to that of the overall dataset (distance ≤ t)

Can we always do this?

How would it affect utility?

Race	Zip	Condition	
Caucas	787XX	Flu	
Caucas	787XX	Shingles	
Caucas	787XX	Acne	
Caucas	787XX	Flu	
Caucas	787XX	Acne	
Caucas	787XX	Flu	
Asian/AfrAm	78XXX	Flu	
Asian/AfrAm	78XXX	Flu	
Asian/AfrAm	78XXX	Acne	
Asian/AfrAm	78XXX	Shingles	
Asian/AfrAm	78XXX	Acne	
Asian/AfrAm	78XXX	Flu	

L. Ninghui, et al. "t-closeness: Privacy beyond k-anonymity and l-diversity." IEEE 23rd international conference on data engineering, 2007.

Combining Everything

Race	Zip	HIV status	Condition
Caucas	787XX	HIV+	Flu
Asian/AfrAm	787XX	HIV-	Flu
Asian/AfrAm	787XX	HIV+	Shingles
Caucas	787XX	HIV-	Acne
Caucas	787XX	HIV-	Shingles
Caucas	787XX	HIV-	Acne

Bob is Caucasian and I've heard he was admitted to a hospital with flu...

This goes against the rules! "flu" is not a quasi-identifier

Imagine a table which is:

- k-anonymous,
- I-diverse,
- and t-close table

Perfect privacy?

Yes... and this is yet another problem with k-anonymity

k-Anonymity ≠ Privacy

• Syntactic

- Focuses on data transformation, not on what can be learned from the anonymized dataset
- "k-anonymous" dataset can leak sensitive information Background knowledge exists!
- "Quasi-identifier" fallacy
 - Assumes a priori that attacker will not know certain information about his target
- Relies on locality
 - Destroys utility of many real-world datasets