

Data Privacy CMSC 491/691

L08 – Secure Multi-Party Computation

Icons from https://thenounproject.com/

Previously on...

- Differential Privacy is current state of the art for privacy protection
- Privacy parameter (ε) to adjust the tradeoff between the level of privacy loss and data quality
- Not for all privacy problems!
 - Statistical releases
 - Works well with large amounts of data

Google's Differential Privacy Tools Still Don't Solve Most of Our Data Problems

In the news!

Privacy and Collaboration

NASA इसरो ंडल्व (Cesa

Parties: International satellite operators
Desired output: potential collisions
Private information: location, maneuver
schedule

Other Examples

• Elections

- N parties, each vote "yes" or "no"
- Goal: determine whether the majority voted "Yes", but no voter should learn how other people voted

• Auctions

- Each bidder makes an offer
 - Offer should be committing! (can't change it later)
- Goal: determine whose offer won without revealing losing offers

• Distributed data mining

- Two companies want to compare their datasets without revealing them
 - For example, compute the intersection of two lists of names

• Database privacy

- Evaluate a query on the database without revealing the query to the database owner
- Evaluate a statistical query on the database without revealing the values of individual entries
- Many variations

Current Approaches to Collaboration

Collaboration requires giving data to trusted parties, accepting security and privacy risks

Secure Multi-Party Computation (MPC)

- Goal: replace trusted party with technology
- Requirements
 - **Correctness:** everyone learns correct result of computation
 - **Privacy/security:** no one learns anything beyond result
- MPC provides correctness and security without trusted party
 - For any computation
 - For any number of parties

Canetti, Ran, et al. "Adaptively secure multi-party computation." Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996.

Shamir secret sharing GMW BGW			
1980s: Existence	1990s: Adolescence	2000s: Idealism	2010s: Pragmatism
Yao's garbled circuits			

Shamir secret sharing (GMW BO	Beaver GW triples	Packed SS		
1980s: /	Existence	1990s	Adolescence	2000s: Idealism	2010s: Pragmatism
Yao's garbled circuits		point & permute	row reduction		

Shamir secret sharing	GMW	BGW	Beaver triples	Packed SS	Homomorph secret sharir	ic 1g	
1980s	: Existen	ce	1990s	: Adolescence	2000s: /	Idealism	2010s: Pragmatism
Yao's garbled circuits			point & permute	row reduction	OT extension Fairp	free XOR lav	

Shamir secret sharing	GMW	BGW	Beaver triples	Packed SS	Homomorph secret sharir	ic 1g	Homomorphic Enc and MACs	× via OT
1980s	: Existen	ce	1990s	: Adolescence	2000s:	Idealism	2010s: Prag	matism
Yao's garbled circuits			point & permute	row reduction	OT extension	free XOR	fleXOR	half gates
					Fairp	lav		

Adversarial Models

- Some participants may be **dishonest** (corrupt)
 - If all were honest, we would not need secure multi-party computation
- **Semi-honest** (aka passive; honest-but-curious)
 - Follows protocol, but tries to learn more from received messages than they would learn in the ideal model
- Malicious
 - Deviates from the protocol in arbitrary ways, lies about his inputs, may quit at any point

Building Blocks of MPC

What's the average salary?

(6200 + 5800 + 7300 + 5100) / 4 = \$6100 per person

We want to know the avg salary, but we don't want anybody to know our salary

			No one learns anything beyond the result of computation
8	Jack \$5100	7751	Average: 24400 / 4 = 6100 per person
8	Bobby \$7300	13362	Random data amount: $7081 - 3804 + 13362 + 7751$ = 24400
\bigcirc	John \$5800	-3804	Dendem dete emeunt: 7091 - 2904 - 12262 - 7751
8	Jane \$6200	7081	Raw data amount: 6200 + 5800 + 7300 + 5100 = 24400

MPC for Any Function

MPC for Arithmetic Computation

MPC for Boolean Computation

MPC for add, multiply primitives over integers can securely compute any function!

MPC for XOR, AND primitives over bits can securely compute any function!

MPC can securely compute any function using arithmetic or Boolean primitives

Why Secret-Sharing?

- Encryption techniques are **computationally secure**
 - A powerful adversary can break the encryption technique
 - Google, with sufficient computational capabilities, broke SHA-1 (https://shattered.io/)
- Information-theoretical security
 - Secure regardless of the computational power of an adversary
 - Quantum secure

The Concept of Secret Sharing

(n, t) LOCKED BOX REPRESENTATION

A secret s

The Concept of Secret Sharing

(n, t) LOCKED BOX REPRESENTATION

(n, t) LOCKED BOX REPRESENTATION

(n, t) LOCKED BOX REPRESENTATION

(n, t) LOCKED BOX REPRESENTATION

(n, t) LOCKED BOX REPRESENTATION

(n, t) LOCKED BOX REPRESENTATION

Any t parties cannot open the box Any (t + 1) parties can open the box

(n, t) LOCKED BOX REPRESENTATION

Any t parties cannot open the box Any (t + 1) parties can open the box

(n, t) LOCKED BOX REPRESENTATION

Any t parties cannot open the box Any (t + 1) parties can open the box

Shamir's Secret-Sharing (SSS)

Shamir's Secret-Sharing (SSS)

Only 1 share \rightarrow all possible straight lines over the field

Only 1 share \rightarrow all possible straight lines over the field

Any set of 2 shares \rightarrow original straight line and the secret

Oblivious Transfer (OT)

1-out-of-2 Oblivious Transfer

Michael O. Rabin. "How to exchange secrets by oblivious transfer" Technical Report TR-81, Aiken Computation Laboratory, Harvard University, 1981

Oblivious Transfer (OT)

"Learn no more than what they would if they were interacting with a trusted third party"

OT Variants

Using OT to Compute Operations

 $m_b = (1 \oplus b)m_0 \oplus bm_1$

Α	В	A \oplus B
0	0	0
0	1	1
1	0	1
1	1	0

If
$$b = 0 \rightarrow m_b = m_0 \oplus 0 = m_0$$

$$\mathsf{f} \mathsf{b} = 1 \ o m_b = 0 \oplus m_1 = m_2$$

Using OT to Compute Operations

 $m_b = (1 \oplus x_2)0 \oplus x_2 x_1 = x_2 x_1$

1

0

0

nput Parties	Computing Parties	Result Parties

Input Parties

Computing Parties

Result Parties

. . .

=

Input Parties

Computing Parties

Result Parties

•• ••

Input Parties

Computing Parties

Result Parties

Result Parties Input Parties Computing Parties • • == •• •• • • = • = •• •• •• •• •• •• ••

MPC Challenges

• Communication overheads!

MPC in Use!

Tax Fraud

- ITL economic benchmarks
 - Collection of Estonian companies
 - Aggregate economic indicators: profit, # employees, salaries
- VAT tax revenue

- Worked with Estonian Tax and Customs Board
- Test if Company A's VAT credit == Company B's VAT reported

Electricity Markets

Energy trading with smart meters

- Handles 2500 bids in ~5 min
- Auction run every 30 min

Abidin, Aly, Cleemput, and Mustafa, An MPC-based Privacy-Preserving Protocol for a Local Electricity Trading Market

Public Good (Wage Disparity)

Becoming the Best City in America for Working Women

2013

CITY OF BOSTON Office of the Mayor Martin J. Walsh

STAPLES

MAKE MORE HAPPEN

ØEastern Bank

nationalgrid

Abt

00

homas M. Menino

Public Good (Wage Disparity)

Goal 3: Evaluating Success

Employers agree to contribute data to a report *compiled by a third party* on the Compact's success to date. *Employer-level data would not be identified* in the report.

https://thebwwc.org/mpc

Public Good (Wage Disparity)

https://thebwwc.org/mpc

Bestavros, Azer, Andrei Lapets, and Mayank Varia. "User-centric distributed solutions for privacy-preserving analytics." Communications of the ACM 60.2 (2017): 37-39.

"Student Right to Know Before You Go" Bill

- Empower prospective college students to make more informed decisions
- Measure annual earnings and accumulated debt of recent graduates

115th CONGRESS 1st Session

IN THE SENATE OF THE UNITED STATES

Mr. WYDEN (for himself, Mr. RUBIO, and Mr. WARNER) introduced the following bill; which was read twice and referred to the Committee on

"in designing, establishing, and maintaining the higher education data system, ... the Commissioner shall **use secure multiparty** *computation technologies*"

"Student Right to Know Before You Go" Bill

Introduced

Bills and resolutions are referred to committees which debate the bill before possibly sending it on to the whole chamber.

<u>Read Text »</u>

Reintroduced Bill — Introduced This activity took place on a related bill, <u>S. 3952</u>.

Conclusions

- MPC provides a mechanism to promote collaboration
- Goal: prevent other parties from learning about shared data
- MPC maintains data usability and "privacy" (more like "confidentiality")
 - Not the differential privacy definition of privacy! Attacks are still possible...
- High computational and communication costs!
- Assumptions about maliciousness of participants

Group Activity

- Think about your group project
- Do you need to collaborate to learn something?
 - What data would you need to share?
 - Who would be the collaboration parties?
 - What would you want to learn?
 - What would you want to protect?